Optimal Window: Integrating Weather into Genomic Prediction *Vamsi Manthena*¹, *Diego Jarquin*², *Reka Howard*¹

¹Department of Statistics, University of Nebraska-Lincoln; ²Agronomy Department, University of Florida

Genomic Prediction

Data Description

- Chickpea Data set with 278 lines
- Main Trait: Days to Maturity Low / High
- Secondary Traits 6 traits
- Weather 4 covariates x 100 days
- Marker data 10000 markers

Method: Optimal window

- Finlay-Wilkinson (FW) Regression:
 - Mean response by environment $\overline{Y}_{E_1}, \dots, \overline{Y}_{E_8}$
 - Mean of weather variable in window by environment $\overline{W}_{E_1}, \dots, \overline{W}_{E_8}$
- Find window with highest correlation between the two.

Genomic Prediction Method: Steps

- 0. Perform FW regression to find optimal weather window
- 1. Obtain intrinsic effect of secondary traits
- 2. Perform logistic regression with forward selection
- 3. Determine optimal threshold for classification
- 4. Model evaluation

Results

Conclusions

- Promising preliminary results
 - Optimized window improves performance
 - Proposed method outperforms ML methods
- Sparse final model 31 variables
 RF used ~3500 variables
- Improved interpretability of weather effect for plant breeders

Questions?

Feel free to reach out:

vamsi.manthena@gmail.com

www.vamsimanthena.com

50